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1 Introduction

The fundamental interactions of nature are governed by gauge theories. Gauge sym-

metries necessarily imply redundant description from the point of view of dynamics.

Although redundant degrees of freedom can be eliminated in a number of ways there

are reasons of not doing so. Among them there are necessity for the manifestation

of covariance, locality of interactions etc. Quantization generally requires introduc-

tion of ghost fields. In linear gauges in electrodynamics ghosts decouple and can be

ignored. In non-abelian theories we require interacting ghosts. A major progress in

understanding was the Fadeev-Popov procedure. Batalin-Vilkovisky formalism is a

generalization of Fadeev-Popov that allows us to deal with a class of more general

theories: theories with reducible gauge algebras.

2 Preliminaries

Let’s consider a system whose dynamics is governed by a classical action S0[φ]. By

φ we will be denoting a set of fields φi(x), i = 1, . . . , n. The index i can denote index

of arbitrary nature: spacetime indices of tensor fields, spinor indices of fermion fields

etc. Let ε(φi) = εi denote the statistical parity of φi. Each field φi can be either

commuting (εi = 0) or anticommuting (εi = 1) with naturally defined generalized

commutator φi(x)φj(y) = (−1)εiεjφj(y)φi(x).

2.1 Right and left derivatives

Left and right derivatives are defined correspondingly:

1



∂lX
∂φ

≡ ~∂
∂φ

X ∂lX
∂φ

≡ X
←−
∂
∂φ

(1)

Right derivatives act from right to left. The differential dX(φ) = dφ∂lX
∂φ

= ∂rX
∂φ

dφ.

Now let’s establish the connection between left and right derivatives. We may assume

that X = φY + Z. Where without loss of generality Y and Z have no φ dependence.

The left and the right derivatives of X are then

∂lX/∂φ = Y ∂rX/∂φ = (−1)εY Y = (−1)ε(φ)(εX+1)Y (2)

So for all cases

∂rX/∂φ = (−1)εY Y = (−1)ε(φ)(εX+1)Y (3)

2.2 Reducible and irreducible gauge theories

The simplest gauge theories, for which all gauge transformations are independent,

are called irreducible. When some gauge transformations are dependent such gauge

theories are called reducible. In reducible gauge theories there is a kind of ”gauge

invariance” for gauge transformations, they are referred to as ”level-one” gauge in-

variances. Also ”level-two” gauge invariances can occur, i.e. gauge invariances for

level-one invariances etc. The generalization of this idea is the concept of so called

Lth stage reducible theory.

Let’s assume that the action is invariant under a set of m0 (m0 ≤ n) non-trivial

gauge transformations, which read in infinitesimal form

δφi(x) = [Ri
α(φ)εα](x) (4)

Each gauge parameter is either commuting ε(εα) = εα = 0 or anticommuting

εα = 1. The statistical parity of Ri
α is ε(Ri

α) = εi + εα (mod 2). Let S0,i(φ, x) denote

the variation of the action with respect to φi(x):

S0,i(φ, x) =
∂rS0[φ]

∂φi(x)
(5)

The statement that the action is invariant under the gauge transformations (for

arbitrary values of gauge parameters within some range) means that the Noether

identities hold:

2



S0,iR
i
α = 0 (6)

To commence a perturbation theory, one searches for the solutions to the classical

equations of motion, S0,i(φ, x) = 0, and then expands about these solutions. The

theory is based on the assumption that there exists at least one stationary point

φ0 = φj
0 such that

S0,i|φ0 = 0. (7)

This equation defines a surface Σ in function space, which is infinite dimensional

when gauge symmetries are present.

As a consequence of the Noether identities, the equations of motion are not inde-

pendent, propagators do not exist.

The most general solution to the Noether identities is a gauge transformation, up

to terms proportional to the the equations of motion:

S0,iλ
i = 0 ⇔ λi = Ri

0α0
λ′α0 + S0,jT

ji (8)

The subscript 0 on the gauge generator indicates the level of gauge transformation.

The second term S0,jT
ij is known as a trivial gauge transformation.

If the functionals Ri
0α0

are independent on-shell then the theory is irreducible. In

this case

rank Ri
0α0
|Σ = m0 (9)

However there might be dependencies among the gauge generators left and, as a

consequence the rank of the generator might be less than their number. Precisely if

rankRi
0α0
|Σ < m0 the theory is reducible. If m0−m1 of the generators are independent

on-shell, then there are m1 relations among them and there exists m1 functionals Rα0
1α1

such that

Ri
0α0

Rα0
1α1

= S0,jV
ji
1α1

, α1 = 1, . . . ,m1; ε(Rα0
1α1

) = εα0 + εα1 (mod 2) (10)

The Rα0
1α1

are the on-shell null vectors for Ri
0α0

since Ri
0α0

Rα0
1α1
|Σ = 0 on-shell. If

the functionals Rα0
1α1

are independent on-shell

rank Rα0
1α1
|Σ = m1, (11)
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then the theory is called first-stage reducible. The generalization of the this leads

to Lth stage reducible theory.

2.3 Abelian gauge theories

Let’s have a look at the example of an Lth stage reducible theory. Let A be a p-form

and define F to be its field strength: F = dA where d is the exterior derivative. For

p + 1 dimension d of spacetime, an action for this theory is

S0 = −1

2

∫
F ∧ ∗F, (12)

where ∗ is the Hodge star taking a q-form to a d − q-form and ∧ is the wedge

product. Using the nilpotency of exterior derivative (d2 = 0) one sees that the action

is invariant under the gauge transformation

δA = dλp−1, (13)

where λp−1 is a p−1-form. The gauge transformation has its own gauge invariance

which is, not surprisingly, is a derivative of a p− 2-form etc:

δλp−1 = dλp−2, . . . , δλ1 = dλ0, (14)

where λ is a q-form. The number of degrees of freedom is

ndof = Cp
d − Cp−1

d + Cp−2
d − · · ·+ (−1)pC0

d = Cp
d−1 (15)

Cq
d is the number of combination and naturally the dimension of the space of

q-forms in d dimensional spacetime.

The gauge generators at the sth stage, Rαs−1
sαs

, correspond to the exterior derivative

d acting on the space of (p− 1− s) forms, d(p−1−s):

R0 ↔ d(p−1), R1 ↔ d(p−2), . . . , Rp−1 ↔ d(0) (16)

3 The classical formalism

Here we present the formalism at the classical level. It involves five steps:

The original configuration space is enlarged to include additional fields such as

ghost fields, ghosts for ghosts etc. Antifields for all those fields are also introduced.
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On the space of fields and antifields an odd symplectic structure ( , ) is defined

which is referred to as ”antibracket”.

The classical action S0 is extended to inlcude terms involving ghosts and antifields

and is denoted by S.

The classical master equation is defined to be (S,S) = 0.

Solutions to the classical master equation subject to certain boundary conditions

can be found.

Suppose we have an irreducible theory with m0 gauge invariances. Then m0

ghost fields are needed. In this case the field set is ΦA = {φi, Cα0
0 }, where α0 =

1, . . . ,m0. If the theory is Lth stage reducible the set of fields is ΦA = {φi, Cαs
s ; s =

0, . . . , L; αs = 1, . . . ,ms}. To each of these fields an additive conserved charge, called

ghost number, is assigned. The classical fields φi are assigned ghost number zero,

ordinary ghosts have ghost number 1, level-one ghosts have ghost number two, etc.

Similarly, ghosts have opposite statistics of the corresponding gauge parameter, ghosts

for ghosts meanwhile have the same statistics as the gauge parameter and so on. We

write this as following:

gh[Cαs
s ] = s + 1, ε(Cαs

s ) = εαs + s + 1 mod 2 (17)

Next step is introduction of antifields Φ∗A, A = 1, . . . , N for each field ΦA. The

ghost number and statistics of Φ∗A are

gh[Φ∗A] = −gh[ΦA]− 1, ε(Φ∗A) = εΦA
+ 1 mod 2 (18)

So the statistics of Φ∗A is opposite to that of ΦA.

3.1 Antibracket

In the space of fields and antifields the antibracket is defined by

(X,Y ) ≡ ∂rX

∂ΦA

∂lY

∂Φ∗A
− ∂rX

∂Φ∗A

∂lY

∂ΦA
. (19)

Many properties of (X, Y ) are similar to a graded Poison bracket, with the grading

of X and Y being εX + 1 and εY + 1 instead of εX and εY . The antibracket satisfies
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(Y,X) = −(−1)(εX+1)(εY +1)(X, Y ),

((X, Y ), Z) + (−1)(εX+1)(εY +εZ)((Y, Z), X) + (−1)(εZ+1)(εX+εY )((Z,X), Y ) = 0,

gh[(X, Y )] = gh[X] + gh[Y ] + 1,

ε[(X, Y )] = εX + εY + 1 (mod 2).

(20)

For example let’s prove the first property :

(Y,X) = ∂rY
∂ΦA

∂lX
∂Φ∗A

− ∂rY
∂Φ∗A

∂lX
∂ΦA

= (−1)(εX+εA)(εX+εA+1) ∂lX
∂Φ∗A

∂rY
∂ΦA − (−1)(εX+εA)(εY +εA+1) ∂lX

∂ΦA
∂rY
∂Φ∗A

(21)

Now using equation (2) we obtain

(−1)εXεY +εX+εY +1 ∂rX

∂Φ∗A

∂lY

∂ΦA
− (−1)εXεY +εX+εY +1 ∂rX

∂ΦA

∂lY

∂Φ∗A
= −(−1)(εX+1)(εY +1)(X, Y ).

(22)

The antibracket carries ghost number one and has odd statistics.

It also has the following properties

(B, B) = 2 ∂rB
∂ΦA

∂lB
∂Φ∗A

, (F, F ) = 0,

((X,X), X) = 0
(23)

3.2 Classical master equation

Let S[Φ, Φ∗] be an arbitrary functional of fields and antifields with dimensions of

action and with ghost number zero and even statistics: ε(S) = 0 and gh[S] = 0. The

equation

(S, S) = 2
∂rS

∂ΦA

∂lS

∂Φ∗A
(24)

is called the classical master equation.

The solution of master equation should satisfy certain boundary conditions. A

relevant solution plays a double role. On one hand, a solution S is the generating

functional for the structure functions of the gauge algebra. On the other hand, S is

the stating action to quantize covariantly the theory.

The variations of S with respect to ΦA and Φ∗A are the equations of motion:
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∂rS

∂za
= 0 (25)

where we use collective variables za. Equations of motion define a surface Σ in the

full space of fields and antifields. Restriction to this surface is what is meant by being

”on-shell”.

An action S, satisfying the master equation, possesses its own set of gauge invari-

ances. Indeed, by differentiating it with respect to zb, one finds that

∂rS
∂za Ra

b = 0, a = 1, ..., 2NRa
b ≡ ζac ∂l∂rS

∂zc∂zb . (26)

Although there appears to be 2N gauge invariances, not all of them are inde-

pendent on-shell. Differentiating with respect to zd, multiplying by ζcd, using the

definition of Ra
b and imposing stationary condition we find

Rc
aR

a
b |Σ = 0 (27)

The matrix Ra
b turns out to be nilpotent on-shell. A nilpotent 2N×2N matrix has

rank less or equal to N . Hence at a stationary point there exist at least N relations

among the gauge generators Ra
b and therefore the number 2N − r of independent

gauge transformations on-shell is greater or equal to N , where r is the rank of the

hessian of S at the stationary point:

r ≡ rank
∂r∂lS

∂za∂zb
|Σ (28)

A solution to the master equation is called proper if r = N .

Now let’s specify the relation between S0 and S. To make contact with the

original theory, one requires the proper solution to contain the original action S0[φ].

This requirement ensures the correct classical limit. It corresponds to the following

boundary condition on S

S[Φ, Φ∗]|Φ∗ = S0[φ] (29)

An additional boundary requirement is

∂r∂lS

∂C∗s−1,αs−1
∂Cαs

s

|Φ∗=0 = Rαs−1
sαs

(φ), s = 0, . . . , L. (30)

For notational convenience we define
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C
α−1

−1 ≡ φi, C∗−1,α−1
≡ φ∗i , α−1 = i. (31)

Given the ghost number restriction and the boundary conditions the expansion

necessarily has the following form:

S[Φ, Φ∗] = S0[φ] + ΣL
s=0C

∗
s−1,αs−1

Rαs−1
sαs

Cαs
s + O(C∗2). (32)

3.3 The classical BRST symmetry

Let’s define the classical BRST symmetry transformation of a functional X of fields

and antifields by

δBX ≡ (X, S). (33)

The transformation of fields is therefore

δBΦA =
∂lS

∂Φ∗A
(34)

δBΦ∗A = − ∂lS

∂ΦA

= (−1)εA+1 ∂rS

∂ΦA
(35)

The field anti-antifield action is classically BRST symmetric

δBS = 0 (36)

what follows from (S, S) = 0.

The BRST operator δB is a nilpotent graded derivation:

δB(XY ) = XδBY + (−1)εY (δB)Y (37)

δ2
BX = 0. (38)

The nilpotency follows from two properties of the antibracket : the graded Jacobi

identity and graded antisymmetry.

((X, S)S) = −((S, S), X) + (−1)εX+1((S, X), S) = −((S, S), X)− ((X, S), S), (39)

which leads to to ((X, S), S) = −1
2
((S, S), X) = 0.

A functional O is a classical observable if δBO = 0 and O 6= δBY for some Y. Two

observables are equivalent if they differ by a BRST transformation.
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3.4 Abelian p-form theories

This is an example of (p − 1)-stage off-shell reducible theories. Consequently there

are p different types of ghosts: C0, C1, . . . , Cp−1, where Cs is a (p − 1 − s)-form. So

ΦA = A, C0, C1, ..., Cp−1, Φ∗A = A∗, C∗0 , C
∗
1 , ..., C

∗
p−1.

The proper solution of classical master equation is

S =

∫
−1

2
F ∧ ∗+ ∗(A∗) ∧ dC0 +

p−1∑
i=1

∗(C∗i−1) ∧ dCi (40)

As a consequence of integration by parts and d2 = 0 (S, S) = 0:

∂rS

∂Aµ1µ2...µp

∂rS

∂A∗µ1µ2...µp
∝

∫
(∗d ∗ F ) ∧ ∗dC0 ∝

∫
d(∗F ∧ dC0) = 0, (41)

∂rS

∂(Ci)µ1µ2...µp−i−1

∂rS

∂(Ci)∗µ1µ2...µp−i−1
∝

∫
(∗d ∗ (C∗i ) ∧ ∗dCi+1 ∝

∫
d(∗F ∧ dCi+1) = 0,

(42)

4 Quantum master equation

First of all let’s introduce antifields Φ∗A and look for such an action W (Φ, Φ∗) that

Φ∗A|Σ =
∂rΨ(Φ)

∂ΦA
(43)

Let’s have a look at vacuum-vacuum amplitude:

ZΨ =

∫ ∏
dΦAexp{ i

h̄
W (Φ,

∂rΨ

∂Φ
)} (44)

When we shift Ψ by a δΨ the amplitude changes by

δZ = i

∫ ∏
dΦAexp{ i

h̄
W (Φ,

∂rΨ

∂Φ
)}δrW (Φ, Φ∗)

δΦ∗A
|Φ∗A=δΨ/δΦ

δ(δΨ)

δΦA
(45)

By means integrating by parts we obtain the following equivalent of classical

master equation:

(W, W ) = i2h̄∆W, ∆ ≡ ∂r

∂ΦA

∂l

∂Φ∗A
(46)

This equation is equivalent to
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∆exp

[
i

h̄
W

]
= 0 (47)

If we present W as

W = S +
∞∑

p=1

h̄pMp, (48)

where S is the classical part of the action, and the reminder is the contribution

of the quantum integration measure, which secures the invariance of the functional

integral. After substitution of this expansion to equation (46) we find:

(S, S) = 0, (M1, S) = i∆S

(Mp, S) = i∆Mp−1 − 1
2

∑p−1
q=1(Mq, Mp−q), p ≥ 2.

(49)

Further consideration leads to construction of the solution of the master equation

in the explicit form according to certain boundary conditions.

5 Conclusion

Batalin-Vilkovisky formalism is a convenient instrument used for analysis of possible

symmetry-breaking by quantum effects. It allows us to work with unclosed or irre-

ducible gauge algebras where other methods fail. The presented formalism introduces

ghosts from the outset and automatiaclly incorporates the BRST symmetry. In a very

direct sense it is a generalization of Fadeev-Popov quantization procedure.
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